
1 

 

Description of SAM’s CSP User-defined Power 
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Motivation 
SAM models parabolic trough, linear Fresnel, and molten salt power tower configurations 

that employ a heat transfer fluid (HTF) to absorb solar irradiance and deliver it as thermal 

power to a thermodynamic power cycle that utilizes steam as the working fluid. This type of 

configuration is known as an “indirect HTF” configuration, as opposed to “direct HTF” 

configurations wherein the power cycle working fluid also passes through the receiver (e.g. 

direct steam power tower). SAM’s default indirect HTF power cycle model is a regression 

model developed from a detailed first-principles basis Rankine cycle model. This basis model 

calculates cycle performance over the expected cycle operating range by modeling each 

cycle component at off-design conditions. The model assumes that deviation in cycle 

performance at off-design conditions is independent of cycle design and only a function of 

deviation from the user specified design point. This model generally has been a fast, 

flexible, and accurate tool for most conventional CSP power cycles. However, some users 

have requested the capability to model their own Rankine cycle design or to model newer 

concepts that pursue the aggressive SunShot targets.  

Approach 

Overview 
NREL has developed a user-defined power cycle option for SAM’s indirect HTF technology 

models to meet this growing demand to model diverse and custom cycles. This option 

presupposes that the user has a custom power cycle model that can be used to generate 

cycle performance results over expected operating conditions. The methodology uses a 

structured design-of-experiments approach to guide and limit the number of custom power 

cycle simulations required. SAM provides data tables in its User Interface to store the user’s 

performance data. SAM uses this tabular data to build a power cycle regression model that 

considers single variable effects and two variable interactions. The following sections explain 

the user-defined power cycle option in more detail.   

Custom Power Cycle Model Requirements 
SAM’s indirect HTF component models use first-principles relationships to model the 

interaction between physical component design (e.g. receiver tube diameter, absorptivity, 

etc.), ambient conditions, and plant performance. Consequently, SAM’s component models 

for the receiver, storage, and power cycle must conserve mass and energy as well as track 

the HTF temperature as the HTF passes between components. In order to integrate custom 

power cycle data into the existing indirect HTF technology models, the custom power cycle 
model must accept as inputs the HTF temperature (𝑇𝐻𝑇𝐹,ℎ𝑜𝑡) and normalized mass flow rate 

(�̇�). Ambient temperature (𝑇𝑎𝑚𝑏) also influences the performance of thermodynamics power 

cycles and is the third independent input required of the custom model. Conceptually, the 
custom model calculates the outputs in the form of Equation (1), where 𝑌 represents any 

model output (e.g. cycle electric power generated). Because the technology models depend 

on the relationship between temperatures, mass flow rate, and thermal power, it is crucial 

that the custom cycle model is assuming HTF properties corresponding to the HTF selected 

in the SAM user interface (UI). 
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𝑌 = 𝑓(�̇�, 𝑻𝑯𝑻𝑭, 𝑻𝒂𝒎𝒃) (1)  

The custom model must return calculated metrics that define the cycle’s performance; at a 

minimum, SAM requires the thermal power delivered to the cycle from the HTF (�̇�𝐻𝑇𝐹) and 

cycle electric power generated (�̇�𝑐𝑦𝑐𝑙𝑒). Given these values, SAM applies Equation (2) to 

calculate the HTF cold temperature returning to the receiver and/or thermal energy storage 
(𝑇𝐻𝑇𝐹,𝑐𝑜𝑙𝑑), where 𝑐𝑝 is the HTF specific heat at the average of the hot and cold temperatures. 

SAM also allows the user to optionally report calculated cooling parasitic load (�̇�𝑐𝑜𝑜𝑙𝑖𝑛𝑔) and 

cycle water use (�̇�𝑤𝑎𝑡𝑒𝑟). Because the cooling parasitic load is optional, the user must be 

sure that it is consistent with the reported cycle electric power generated. Equation (3) 

shows the relationship between the cycle net power calculated in SAM’s regression model 

and the values reported from the user’s custom model. 

𝑇𝐻𝑇𝐹,𝑐𝑜𝑙𝑑 = 𝑇𝐻𝑇𝐹,ℎ𝑜𝑡 −
�̇�𝐻𝑇𝐹

�̇� ∗ 𝑐𝑝

 (2)  

�̇�𝑛𝑒𝑡,𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = �̇�𝑐𝑦𝑐𝑙𝑒,𝑐𝑢𝑠𝑡𝑜𝑚 − �̇�𝑐𝑜𝑜𝑙𝑖𝑛𝑔,𝑐𝑢𝑠𝑡𝑜𝑚 (3)  

Custom Cycle Design Point Performance 
Because the custom power cycle model must interface with the CSP system defined in SAM, 

it is important to maintain consistency between the design points in SAM and the inputs and 

response of the custom cycle model. The SAM user interface contains user-specified and 

calculated inputs that define the custom cycle inputs and outputs at design. That is, two of 

the cycle inputs at design, HTF hot temperature and ambient temperature, are defined on 

the user interface, while the normalized mass flow rate is defined as 1.0 by convention. 

Similarly, the design point cycle efficiency, electric power generation, cooling parasitic load, 

and cycle water use are also defined in the user interface. Consequently, when solved with 

the design inputs, the custom power cycle outputs should match the corresponding values 

in SAM. 

SAM’s regression model requires that the user report the custom cycle model outputs 

normalized relative to their design values. As such, the normalized outputs will equal 1.0 at 

the design case. 

Sampling the Custom Power Cycle Model 
With a custom cycle model meeting the above requirements, the user must populate SAM’s 

data tables with cycle outputs. The goal of the data tables is to accurately capture the 

custom cycle performance over practical ranges for each of the three independent inputs 

(for example, the normalized HTF mass flow rate may float between 0.3 and 1.1 during an 

annual simulation). One way to ensure that the tables represent the custom cycle over its 

expected operating conditions is to require the user to sample a dense mesh of input 

combinations. For example, if the user determines that 20 values accurately represent the 

range of possible values for each input, then the user would need to complete 8000 (i.e. 

203) custom power cycle simulations. For many detailed process simulation software 

packages, this is a significant computational burden. Moreover, SAM would need to import 

all of the calculated data, and the regression model would need to expansively search 

through the data to find the correct interpolation region at any given set of inputs. 

To reduce the computational requirements, SAM uses a multi-level design-of-experiments 

approach to limit the number of simulations required to represent the custom power cycle 

model by modeling single variable effects and two variable interactions. This approach 

requires that the user define low and high level values for each input, designated in Table 1 

by − and + superscripts, respectively. The low level value should be less than the input’s 

design value (designated by the ∗ superscript) and greater than or equal to the lowest value 

of the input’s practical range. For example, if the practical range of the normalized HTF 
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mass flow rate is from 0.3 and 1.1 and the design value is 1.0, then the low level of HTF 

mass flow rate could be 0.5 or 0.3, but not 0.2. Similarly, the high level value should be 

greater than the input’s design value and less than or equal to the highest value of the 

input’s practical range. 

This approach requires nine parametric simulations of the custom cycle model: three for 

each input. First, the single variable (or main) effects are captured by a parametric analysis 

of the custom power cycle model over the practical range of the respective main input with 

the remaining two inputs at their design values, as shown by Parametric Analyses 2, 5, and 

8 in Table 1. Next the interaction input for each main input is set to its low level, and the 

parametric analyses are rerun, as shown by Parametric Analyses 1, 4, and 7. Finally, the 

interaction inputs are set to their high levels, and the process repeated, as shown by 

Parametric Analyses 3, 6, and 9. In this way, the interaction is captured for each of the 

three possible combinations of two independent inputs. If the user selects 20 values to 

cover the practical range for each independent input, for example, then the approach 

outlined in Table 1 requires only 180 (i.e. 20*9) custom power cycle simulations. 

Table 1: Custom Power Cycle Simulations Required to Populate SAM’s Data Tables 

SAM 

table 
Parametric 

Analysis # 
Number of 

Simulations 

Custom Model Inputs 

HTF Hot  Temp 
HTF Mass Flow 

Rate Ambient Temperature 

T
a
b
le

 1
 

1 
𝑁𝑇𝐻𝑇𝐹,ℎ𝑜𝑡

 
𝑇𝐻𝑇𝐹,ℎ𝑜𝑡

𝑖   

𝑓𝑜𝑟 𝑖 = 1. . 𝑁𝑇𝐻𝑇𝐹,ℎ𝑜𝑡
 

�̇�− 

𝑇𝑎𝑚𝑏
∗  2 �̇�∗ 

3 �̇�+ 

T
a
b
le

 2
 

4 
𝑁�̇� 𝑇𝐻𝑇𝐹,ℎ𝑜𝑡

∗  �̇�𝑖 

𝑓𝑜𝑟 𝑖 = 1. . 𝑁�̇� 

𝑇𝑎𝑚𝑏
−  

5 𝑇𝑎𝑚𝑏
∗  

6 𝑇𝑎𝑚𝑏
+  

T
a
b
le

 3
 

7 
𝑁𝑇𝐻𝑇𝐹,𝑎𝑚𝑏

 

𝑇𝐻𝑇𝐹,ℎ𝑜𝑡
−  

�̇�∗ 
𝑇𝐻𝑇𝐹,ℎ𝑜𝑡

𝑖   

𝑓𝑜𝑟 𝑖 = 1. . 𝑁𝑇𝐻𝑇𝐹,ℎ𝑜𝑡
 8 𝑇𝐻𝑇𝐹,ℎ𝑜𝑡

∗  
9 𝑇𝐻𝑇𝐹,ℎ𝑜𝑡

+  
 

Populating Data Tables in SAM 
The user can simulate a custom power cycle model at the conditions in Table 1 to create 

data that SAM uses in its power cycle regression model. Next, the user must import that 

data to the data tables in the SAM User Interface. Rather than a unique table for each of the 

nine parametric analyses listed in Table 1, SAM groups into tables the parametric analyses 

that were calculated with the same main inputs. For example, analyses 1-3 were all 

calculated over the practical range of HTF hot temperatures. Consequently, the first column 

in the corresponding data table in SAM contains the HTF hot temperature, with the number 

of rows matching the number of values in the HTF hot temperature range. Then, the table 

provides three consecutive columns for each calculated output: one column for each level of 

the interaction input.  

Figure 1 shows an example of how data is applied from the parametric analyses in Table 1 

to the SAM data table containing results from parametric analyses of the practical range for 
the HTF hot temperature. Note that the low and high levels for the interaction input, �̇�, are 
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user inputs above the table. The data table containing the HTF mass flow rate results uses 

parametric analyses 4-6, and the table containing the ambient temperature results uses 

parametric analyses 7-9. 

 

Figure 1: Populating the HTF Temperature data table 

SAM’s Regression Model 
SAM uses the normalized performance data that the use enters in the data tables to 

calculate cycle performance by fitting the data to the regression model in Equation (4). The 
three inputs, represented here by 𝑻𝑯𝑻𝑭,𝒉𝒐𝒕, �̇�, and 𝑻𝒂𝒎𝒃, are passed to the regression model 

from the other CSP component models, and as such should fall within but not directly 

coincide with the main inputs in the respective data tables. Equation (4) is solved for each 

of the four outputs, and its normalized output is multiplied to the corresponding design 

value to calculate the output’s absolute value. 

𝑌 = 1 + 𝑓𝑀𝐸,𝑇𝐻𝑇𝐹,ℎ𝑜𝑡
(𝑻𝑯𝑻𝑭,𝒉𝒐𝒕) + 𝑓𝑀𝐸,�̇�(�̇�) + 𝑓𝑀𝐸,𝑇𝑎𝑚𝑏

(𝑻𝒂𝒎𝒃) + 

𝑓𝐼𝑁𝑇,�̇�→𝑇𝐻𝑇𝐹,ℎ𝑜𝑡

± (𝑻𝑯𝑻𝑭,𝒉𝒐𝒕) ∗
(�̇� − �̇�∗)

(�̇�∗ −  �̇�±)
+ 𝑓𝐼𝑁𝑇,𝑇𝑎𝑚𝑏→�̇�

± (�̇�) ∗
(𝑻𝒂𝒎𝒃 − 𝑇𝑎𝑚𝑏

∗ )

(𝑇𝑎𝑚𝑏
∗ − 𝑇𝑎𝑚𝑏

± )

+  𝑓𝐼𝑁𝑇,𝑇𝐻𝑇𝐹,ℎ𝑜𝑡→𝑇𝑎𝑚𝑏

± (𝑻𝒂𝒎𝒃) ∗
(𝑻𝑯𝑻𝑭,𝒉𝒐𝒕 − 𝑇𝐻𝑇𝐹,ℎ𝑜𝑡

∗ )

(𝑇𝐻𝑇𝐹,ℎ𝑜𝑡
∗ − 𝑇𝐻𝑇𝐹,ℎ𝑜𝑡

± )
 

(4)  

where: 

 the 𝑓𝑀𝐸,𝑖(𝒊) terms represent the main effect of input 𝑖, linearly interpolated from the 

corresponding lookup table at 𝒊 and the design value of the interaction input. 

 The superscript ± refers to either the lower or upper level of the interaction input, 

depending on whether the interaction input is less or greater than its design value, 

respectively. 

 the  𝑓𝐼𝑁𝑇,𝑗→𝑖
± (𝒊) terms represent the interaction effect of input 𝑗 on input 𝑖 and are 

calculated two times for each input (one for the upper and one for the lower level of the 

interaction input) from the data tables at the beginning of the a simulation for each 

value in the practical range of 𝑖 using Equation (5). When Equation (4) is applied during 

the annual CSP system simulation, these terms are calculated by linearly interpolating at 
𝒊. 

𝑓𝐼𝑁𝑇,𝑗→𝑖
± (𝒊) = − (𝑇𝑎𝑏𝑙𝑒𝑖(𝒊, 𝒋±) − 1.0 − 𝑓𝑀𝐸,𝑗(𝒋±) − 𝑓𝑀𝐸,𝑖(𝒊)) (5)  

Summary 
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The following steps define the high-level process to successfully run the user-defined power 

cycle option in SAM. 

1. Develop a custom power cycle model that accepts as inputs the HTF hot 

temperature, the normalized HTF mass flow rate (with respect to the design point 

mass flow rate), and the ambient temperature. Ensure that when applying the design 

point inputs, the calculated outputs match the corresponding values in SAM. 

2. For each of the three model inputs: 

a. Select a practical range covering expected cycle operating conditions over the 

course of the annual simulation. Create a sample of values within this range 

to accurately capture the cycle response over the operating range (i.e. select 

the number of values in the range). 

b. Select low and high levels required when the input is the interaction input. 

3. Complete the parametric analyses outlined in Table 1. 

4. Using Figure 1 as a guide, populate the data tables in SAM using the normalized 

custom cycle results from the parametric analyses. 

5. Run the SAM simulation. 

6. Repeat these steps if you modify SAM inputs that affect the custom model results 

(e.g. the HTF temperature at design is increased). 

Example 
This section demonstrates the procedure listed above using a very simple custom power 

cycle model. The code snippets below are in Python. 

1. First, we developed a class in Python to model the simple custom power cycle and title it 

‘generic_power_cycle’. The first method in the class is the required ‘__init__’ call that 

Python uses when an instance of the class is declared. We defined this method to take 

as inputs the cycle design inputs: HTF cold return temperature, thermal efficiency, 

thermal power, HTF hot temperature, ambient temperature, and normalized mass flow 

rate. The method then calculates the design outputs: cycle electric power generation, 

the endoreversible thermal efficiency, and the specific heat required to fulfill the energy 

balance. The second method in this class is ‘off_design’, and it calculates the cycle 

performance given the inputs: HTF hot temperature, normalized HTF mass flow rate, 

and ambient temperature. Note that this method takes the form of Equation (1). To 

simplify the model, the cycle performance calculations assume that the HTF cold return 

temperature is always equal to its design value. Additionally, the simplified model 

assumes that the cycle cooling parasitic load and water use is negligible. 

class generic_power_cycle: 

     

    def __init__(self, T_htf_return, eta_ref, Q_dot_ref, T_htf_ref, T_amb_ref, m_dot_ref): 

        self.T_htf_return = T_htf_return 

        self.eta_ref = eta_ref 

        self.Q_dot_ref = Q_dot_ref 

        self.T_htf_ref = T_htf_ref 

        self.T_amb_ref = T_amb_ref 



 DRAFT  Page 6 of 9 

        self.m_dot_ref = m_dot_ref 

        self.W_dot_ref = self.Q_dot_ref*self.eta_ref 

        self.cp = self.Q_dot_ref/(self.m_dot_ref*(self.T_htf_ref - self.T_htf_return)) 

        self.eta_endorev_ref = 1.0 - 

np.sqrt((self.T_amb_ref+273.15)/(self.T_htf_ref+273.15)) 

 

    def off_design(self, T_htf_od, T_amb_od, m_dot_od): 

        Q_dot_od = m_dot_od*self.cp*(T_htf_od - self.T_htf_return) 

        eta_endorev_od = 1.0 - np.sqrt((T_amb_od+273.15)/(T_htf_od+273.15)) 

        eta_od = ((self.m_dot_ref - abs(self.m_dot_ref-

m_dot_od))/self.m_dot_ref)**0.3*(eta_endorev_od/self.eta_endorev_ref)*self.eta_ref 

        W_dot_od = eta_od*Q_dot_od 

        self.Q_dot_od_ND = Q_dot_od / self.Q_dot_ref 

        self.W_dot_od_ND = W_dot_od / self.W_dot_ref 

        self.W_dot_cool_ND = 1.0 

        self.water_use_ND = 1.0 

 

Next, we added code to open files that will contain values for the three data tables in SAM 

and name the columns that the code will be populating: 

T_htf_csv = open("T_htf.csv","w") 

T_amb_csv = open("T_amb.csv","w") 

m_dot_htf_csv = open("m_dot_htf.csv","w") 

 

common_hdrs = ["W_dot_low", "W_dot_ref", "W_dot_high", "Q_dot_low", "Q_dot_ref", 

"Q_dot_high", "W_dot_cool_low", "W_dot_cool_ref", "W_dot_cool_high", "water_low", 

"water_ref", "water_high"] 

 

T_htf_hdrs = ["T_htf"] + common_hdrs 

T_amb_hdrs = ["T_amb"] + common_hdrs 

m_dot_htf_hdrs = ["m_dot_htf"] + common_hdrs 

 

Finally, to complete this step, we set the required cycle design values using the default 

values from SAM’s molten salt power tower model: 

"Set up design parameters" 

T_htf_return = 290;     #C 

eta_ref = 0.412;        #C 

Q_dot_ref = 279.1;      #MW 
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"Independent variables at design" 

T_htf_ref = 574.0;      #C 

T_amb_ref = 43.0;       #C 

m_dot_htf_ref = 1.0;    #- 

"Initialize generic power cycle class" 

c_PC = generic_power_cycle(T_htf_return, eta_ref, Q_dot_ref, T_htf_ref, T_amb_ref, 

m_dot_htf_ref); 

 

2. Next, we selected the upper and lower values for the practical range of each input. We 

also set the low and high level values to these limits, although they are not required to 

be equal. We chose to have 20 values in the practical range for each value and will 

calculate them equidistantly in the next step. The remaining lines of code prepare lists to 

handle the low, design and high level for each input as well as the calculated input value 

over its practical range.  

"Low and High level values of independent variables" 

T_htf_low = 500.0       #C 

T_htf_high = 580.0      #C 

T_amb_low = 0.0;        #C 

T_amb_high = 55.0;      #C 

m_dot_htf_low = 0.3;        #- 

m_dot_htf_high = 1.2;       #- 

 

N_runs = 20; 

 

T_htf_levels = [T_htf_low, T_htf_ref, T_htf_high] 

T_amb_levels = [T_amb_low, T_amb_ref, T_amb_high] 

m_dot_htf_levels = [m_dot_htf_low, m_dot_htf_ref, m_dot_htf_high] 

T_htf_parametric = {} 

T_amb_parametric = {} 

m_dot_htf_parametric = {} 

 

for key in T_htf_hdrs: 

    T_htf_parametric[key] = [None]*N_runs 

for key in T_amb_hdrs: 

    T_amb_parametric[key] = [None]*N_runs 

for key in m_dot_htf_hdrs: 

    m_dot_htf_parametric[key] = [None]*N_runs 
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3. Then we set up a for loop for each of the 20 values in the input practical ranges (using 

the same number of values in each range simplifies the required code). Next we added 

an inner for loop for the three levels of the interaction input. Using these loops, we 

calculated the correct inputs to the ‘off_design’ method and fill the text files for each of 

the data tables in SAM. 

for i in range(N_runs): 

     

    for j in range(len(T_htf_levels)): 

         

        "First, set parametric values for each independent variable" 

        if( j == 0 ): 

            T_htf_parametric["T_htf"][i] = T_htf_low + (T_htf_high-T_htf_low)/float(N_runs-

1)*i 

            T_amb_parametric["T_amb"][i] = T_amb_low + (T_amb_high-

T_amb_low)/float(N_runs-1)*i 

            m_dot_htf_parametric["m_dot_htf"][i] = m_dot_htf_low + (m_dot_htf_high-

m_dot_htf_low)/float(N_runs-1)*i 

             

        "Set off design values for T_htf parametric" 

        T_htf_od = T_htf_parametric["T_htf"][i] 

        m_dot_htf_od = m_dot_htf_levels[j] 

        T_amb_od = T_amb_ref 

        c_PC.off_design(T_htf_od, T_amb_od, m_dot_htf_od) 

        T_htf_parametric[str(common_hdrs[0+j])][i] = c_PC.W_dot_od_ND 

        T_htf_parametric[str(common_hdrs[3+j])][i] = c_PC.Q_dot_od_ND 

        T_htf_parametric[str(common_hdrs[6+j])][i] = c_PC.W_dot_cool_ND 

        T_htf_parametric[str(common_hdrs[9+j])][i] = c_PC.water_use_ND 

         

        "Set off design values for T_amb parametric" 

        T_amb_od = T_amb_parametric["T_amb"][i] 

        T_htf_od = T_htf_levels[j] 

        m_dot_htf_od = m_dot_htf_ref 

        c_PC.off_design(T_htf_od, T_amb_od, m_dot_htf_od) 

        T_amb_parametric[str(common_hdrs[0+j])][i] = c_PC.W_dot_od_ND 

        T_amb_parametric[str(common_hdrs[3+j])][i] = c_PC.Q_dot_od_ND 

        T_amb_parametric[str(common_hdrs[6+j])][i] = c_PC.W_dot_cool_ND 

        T_amb_parametric[str(common_hdrs[9+j])][i] = c_PC.water_use_ND 
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        "Set off design values for m_dot_htf parametric" 

        m_dot_htf_od = m_dot_htf_parametric["m_dot_htf"][i] 

        T_amb_od = T_amb_levels[j] 

        T_htf_od = T_htf_ref 

        c_PC.off_design(T_htf_od, T_amb_od, m_dot_htf_od) 

        m_dot_htf_parametric[str(common_hdrs[0+j])][i] = c_PC.W_dot_od_ND 

        m_dot_htf_parametric[str(common_hdrs[3+j])][i] = c_PC.Q_dot_od_ND 

        m_dot_htf_parametric[str(common_hdrs[6+j])][i] = c_PC.W_dot_cool_ND 

        m_dot_htf_parametric[str(common_hdrs[9+j])][i] = c_PC.water_use_ND 

         

         

    for j in range(len(common_hdrs)+1): 

        add_end = "," 

        if( j == len(common_hdrs) ): 

            add_end = "\n" 

        T_htf_csv.write(str(T_htf_parametric[str(T_htf_hdrs[j])][i])+add_end) 

        T_amb_csv.write(str(T_amb_parametric[str(T_amb_hdrs[j])][i])+add_end) 

        

m_dot_htf_csv.write(str(m_dot_htf_parametric[str(m_dot_htf_hdrs[j])][i])+add_end) 

         

T_htf_csv.close() 

T_amb_csv.close() 

m_dot_htf_csv.close() 

 

4. The previous steps shows code that generates text files containing data that is formatted 

such that the file can be directly imported to the data tables in SAM. We used the 

Import… button above each data table to load the corresponding text file. 

5. We simulated the user-defined power cycle option in SAM using the imported data 

generated by the Python code. The annual energy generation is about 1% greater than 

the results from the default power cycle model. This comparison helps show that the 

regression model in SAM is correctly modeling the information in the data tables. 


